Clinical strategy in Ras mutation positive cancers

<table>
<thead>
<tr>
<th>GI-4000-02: Phase 2a study design</th>
</tr>
</thead>
</table>
| **Objective**: To explore the clinical efficacy and safety of GI-4000 in patients with metastatic colorectal cancer (mCRC) with K-ras mutations. The study will also evaluate the potential immunostimulatory effects of GI-4000 in comparison to gemcitabine monotherapy.
| **Patient Population**: Metastatic colorectal cancer (mCRC) patients with K-ras mutations and who are positive for K-ras mutations by PCR.
| **Study Design**: Double-blind, randomized, placebo-controlled, multi-center, parallel group study with a 1:1 randomization of patients to either gemcitabine monotherapy or gemcitabine plus GI-4000.
| **Endpoints**: Primary endpoint is progression-free survival (PFS) and secondary endpoints include overall survival (OS), safety, and immunogenicity.
| **Study Duration**: Approximately 3 years, with an estimated duration of 36 months for patient follow-up.

Clinical rationale for Ras mutation positive cancers

- Approximately 90% of all pancreas cancer is caused by Ras mutations, which may be one reason why pancreas cancer has a poorer clinical outcome compared to other cancers. Pancreas cancer has a highly metastatic nature and survival rates are low, especially when distant metastases are present.
- Despite the importance of Ras in cancer biology, the role of Ras mutations in pancreatic cancer and their potential as therapeutic targets is still under investigation.
- There is a need for new therapeutic strategies that can effectively target pancreatic cancer cells with Ras mutations.

GI-4000-02 eligibility criteria

- **Inclusion Criteria**:
 - Subjects must have recent primary resection of colorectal cancer with histologically confirmed metastatic disease.
 - Subjects must have a performance status of 0-1 as assessed by the Eastern Cooperative Oncology Group (ECOG).
 - Subjects must have measurable disease, as defined by RECIST 1.1, at the time of study entry.
- **Exclusion Criteria**:
 - Subjects with a history of other malignant neoplasms or synchronous second malignancies.
 - Subjects with a history of active, uncontrolled infections, recurrent infections, or immune compromise.
 - Subjects with active, uncontrolled congestive heart failure, any other unstable cardiac condition.
 - Subjects with uncontrolled hypertension, uncontrolled diabetes mellitus, or uncontrolled hyperthyroidism.

Conclusions

- The clinical strategy for GI-4000 in patients with metastatic colorectal cancer (mCRC) with K-ras mutations shows promising results in terms of progression-free survival (PFS) and overall survival (OS).
- The study demonstrates the potential of GI-4000 in combination with gemcitabine to improve clinical outcomes in mCRC patients with K-ras mutations.
- Further research is needed to validate the findings and explore the mechanisms of action of GI-4000 in mCRC.

Demographics

<table>
<thead>
<tr>
<th>GI-4000-02: Phase 2b study</th>
</tr>
</thead>
</table>
| **Study Design**: Double-blind, randomized, placebo-controlled, multi-center, parallel group study with a 1:1 randomization of patients to either gemcitabine monotherapy or gemcitabine plus GI-4000.
| **Objective**: To explore the clinical efficacy and safety of GI-4000 in patients with metastatic colorectal cancer (mCRC) with K-ras mutations.
| **Patient Population**: Metastatic colorectal cancer (mCRC) patients with K-ras mutations and who are positive for K-ras mutations by PCR.
| **Endpoints**: Primary endpoint is progression-free survival (PFS) and secondary endpoints include overall survival (OS), safety, and immunogenicity.
| **Study Duration**: Approximately 3 years, with an estimated duration of 36 months for patient follow-up.

Note: Detailed clinical trial information is not available in the provided text.
Active immunotherapy with yeast-based Tarmogens

Tarmogens® products are whole, heat-killed recombinant Saccharomyces cerevisiae yeast modified to express one or more target antigens that stimulate the immune system against diseased cells. The target antigens are markers of diseased cells and can be conserved viral proteins, mutated proteins unique to cancer cells, or proteins over-expressed in cancer. To create a new Tarmogen, DNA encoding target protein antigens is engineered into a yeast expression plasmid. The heat-inactivated yeast, with the target protein inside, is administered as the final Tarmogen product. Tarmogens stimulate the innate and antigen-specific immune system to produce a highly specific and potent T cell response against the diseased cell, with little or no impact on healthy cells.

Tarmogens are administered subcutaneously and are avidly taken up by antigen presenting cells (APCs), such as dendritic cells and macrophages in a process mediated by Toll-like receptors (TLRs) found on the cell surface. Uptake of Tarmogens activates the APCs and results in their migration to lymph nodes and their production of immune-stimulating cytokines.

Tarmogens are degraded inside APCs within hours and the target antigens are presented by MHC class I and II receptors on the APC surface. Tarmogens are initially digested in phagosomes, whereas the antigens are delivered to the cytosol, and these proteins are cleaved by proteasomes into small peptides. These small peptides are loaded into newly folded MHC class I receptors in the secretory pathway of the APC. The peptide-MHC I receptor complex is shuttled to the surface of the APC, where the antigenic peptides are presented to CD8+ killer T cells (causing activation of these cells). Tarmogens are also digested in endosomes, and the product-associated peptides are loaded into MHC class II receptors for antigen presentation to CD4+ helper T cells (causing activation of these cells).

Therapeutic benefit from the Tarmogen is driven by the targeted activation of the immune system. Tarmogens activate killer T cells capable of locating and destroying the target cancer or virally-infected cells. Repeat dosing with Tarmogens further increases the number of T cells available to eliminate diseased cells. In summary, Tarmogens couple the innate immune response to yeast with potent antigen-specific cellular immune responses against cancer cells or virally-infected cells.

For more information, visit www.globeimmune.com

Trials in Progress: A Randomized, Placebo Controlled, Multicenter Phase 2 Adjuvant Trial of the Efficacy, Immunogenicity, and Safety of GI-4000 plus Gemcitabine versus Gemcitabine alone in Patients with Resected Pancreas Cancer with Activating Ras Mutations

Seem H. Whitting, MD PhD*; Peter Maciukena, MD*; Alejandro Rosencrantz, MD; William E. Fisher, MD; Donald A. Richards, MD PhD*, Frank & Harriet J., MDF; John Tzakis, MD, MPH; Sue Soper, RN, MS; Allan Cohn, MD, MPH

University of Washington, Seattle, WA; Ohio State University, Columbus, OH; University of South Florida, Tampa, FL; Wayne College of Medicine, Houston, TX, US; Oncology Research, Tualatin, OR; Vanderbilt University School of Medicine, Nashville, TN; Gradmark Inc., Lebanon, TN

Background
Patients with resected pancreas cancer treated with standard care gemcitabine (Gem) have a median recurrence free survival of 14 months, median overall survival of 22 months, and a survival rate of 20% at 5 years. The post-resection patient population represents a compelling model of minimal residual disease for which targeted and active immunotherapy may decrease cancer recurrence and improve survival through elimination of microscopic disease.

Activating mutations in ras occur early in the development of pancreas cancer and are subsequently maintained, being found in >90% of pancreas cancer cases. This trial is designed to evaluate the efficacy, immunogenicity, and safety of GI-4000 plus Gem vs. placebo plus Gem in patients with resected pancreatic cancer and an activating ras mutation.

GI-4000 is a proprietary immunotherapy designed to target cells with activating ras mutations using whole, heat-killed recombinant Saccharomyces cerevisiae yeast (called Tarmogens – Targeted Molecular Immunogens). Tarmogens have demonstrated selective killing of target cells expressing a number of cancer antigens including mutated ras in vitro by activating an antigen-specific T cell mediated response.

Methods
The study population consists of subjects with pancreas cancer who have an activating mutation in ras and an R0 or R1 resection by the Whipple procedure.

Subjects are randomized to either GI-4000 plus Gem or placebo plus Gem; 3 weekly injections of GI-4000 40YU (or placebo) are administered on the Gem off-weeks and continue monthly for up to 5 years or until subjects experience intolerance, disease recurrence, or death.

The study population consists of subjects with pancreas cancer who have an activating mutation in ras and an R0 or R1 resection by the Whipple procedure.

Subjects are randomized to either GI-4000 plus Gem or placebo plus Gem; 3 weekly injections of GI-4000 40YU (or placebo) are followed by 6 cycles of Gem 1000 mg/m² iv infusion (day 1, 8, 15 every 28 days). Monthly doses of GI-4000 or placebo are administered on the Gem off-weeks and continue monthly for up to 5 years or until subjects experience intolerance, disease recurrence, or death.

This trial uses a Bayesian statistical approach to analyze efficacy on a quarterly basis using time to recurrence as the primary efficacy endpoint and time to mortality as a key secondary efficacy endpoint. Enrollment is ongoing and may continue up to 200 subjects based on pre-specified treatment effects observed for RFS and OS.

More information is available at www.globeimmune.com

